dolphin/Source/Core/Core/HW/CPU.cpp
2025-11-01 10:06:08 +01:00

412 lines
10 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Core/HW/CPU.h"
#include <condition_variable>
#include <mutex>
#include <queue>
#include "AudioCommon/AudioCommon.h"
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Common/Thread.h"
#include "Common/Timer.h"
#include "Core/CPUThreadConfigCallback.h"
#include "Core/Config/MainSettings.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/Host.h"
#include "Core/PowerPC/GDBStub.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "Core/TimePlayed.h"
#include "VideoCommon/Fifo.h"
namespace CPU
{
CPUManager::CPUManager(Core::System& system) : m_system(system)
{
}
CPUManager::~CPUManager() = default;
void CPUManager::Init(PowerPC::CPUCore cpu_core)
{
m_system.GetPowerPC().Init(cpu_core);
m_state = State::Stepping;
}
void CPUManager::Shutdown()
{
Stop();
m_system.GetPowerPC().Shutdown();
}
// Requires holding m_state_change_lock
void CPUManager::FlushStepSyncEventLocked()
{
if (!m_state_cpu_step_instruction)
return;
if (m_state_cpu_step_instruction_sync)
{
m_state_cpu_step_instruction_sync->Set();
m_state_cpu_step_instruction_sync = nullptr;
}
m_state_cpu_step_instruction = false;
}
void CPUManager::ExecutePendingJobs(std::unique_lock<std::mutex>& state_lock)
{
while (!m_pending_jobs.empty())
{
auto callback = std::move(m_pending_jobs.front());
m_pending_jobs.pop();
state_lock.unlock();
callback();
state_lock.lock();
}
}
void CPUManager::StartTimePlayedTimer()
{
Common::SetCurrentThreadName("Play Time Tracker");
// Use a clock that will appropriately ignore suspended system time.
Common::SteadyAwakeClock timer;
auto prev_time = timer.now();
while (true)
{
TimePlayed time_played;
auto curr_time = timer.now();
// Check that emulation is not paused
// If the emulation is paused, wait for SetStepping() to reactivate
if (m_state == State::Running)
{
const std::string game_id = SConfig::GetInstance().GetGameID();
const auto diff_time =
std::chrono::duration_cast<std::chrono::milliseconds>(curr_time - prev_time);
time_played.AddTime(game_id, diff_time);
}
else if (m_state == State::Stepping)
{
m_time_played_finish_sync.Wait();
curr_time = timer.now();
}
prev_time = curr_time;
if (m_state == State::PowerDown)
return;
m_time_played_finish_sync.WaitFor(std::chrono::seconds(30));
}
}
void CPUManager::Run()
{
auto& power_pc = m_system.GetPowerPC();
// Start a separate time tracker thread
std::thread timing;
if (Config::Get(Config::MAIN_TIME_TRACKING))
{
timing = std::thread(&CPUManager::StartTimePlayedTimer, this);
}
std::unique_lock state_lock(m_state_change_lock);
while (m_state != State::PowerDown)
{
m_state_cpu_cvar.wait(state_lock, [this] { return !m_state_paused_and_locked; });
ExecutePendingJobs(state_lock);
CPUThreadConfigCallback::CheckForConfigChanges();
Common::Event gdb_step_sync_event;
switch (m_state)
{
case State::Running:
m_state_cpu_thread_active = true;
state_lock.unlock();
// Adjust PC when debugging
// SingleStep so that the "continue", "step over" and "step out" debugger functions
// work when the PC is at a breakpoint at the beginning of the block
// Don't use PowerPCManager::CheckBreakPoints, otherwise you get double logging
// If watchpoints are enabled, any instruction could be a breakpoint.
if (power_pc.GetBreakPoints().IsAddressBreakPoint(power_pc.GetPPCState().pc) ||
power_pc.GetMemChecks().HasAny())
{
m_state = State::Stepping;
PowerPC::CoreMode old_mode = power_pc.GetMode();
power_pc.SetMode(PowerPC::CoreMode::Interpreter);
power_pc.SingleStep();
power_pc.SetMode(old_mode);
m_state = State::Running;
}
// Enter a fast runloop
power_pc.RunLoop();
state_lock.lock();
m_state_cpu_thread_active = false;
m_state_cpu_idle_cvar.notify_all();
break;
case State::Stepping:
// Wait for step command.
m_state_cpu_cvar.wait(state_lock, [this, &state_lock, &gdb_step_sync_event] {
ExecutePendingJobs(state_lock);
CPUThreadConfigCallback::CheckForConfigChanges();
state_lock.unlock();
if (GDBStub::IsActive() && GDBStub::HasControl())
{
if (!GDBStub::JustConnected())
GDBStub::SendSignal(GDBStub::Signal::Sigtrap);
GDBStub::ProcessCommands(true);
// If we are still going to step, emulate the fact we just sent a step command
if (GDBStub::HasControl())
{
// Make sure the previous step by gdb was serviced
if (m_state_cpu_step_instruction_sync &&
m_state_cpu_step_instruction_sync != &gdb_step_sync_event)
{
m_state_cpu_step_instruction_sync->Set();
}
m_state_cpu_step_instruction = true;
m_state_cpu_step_instruction_sync = &gdb_step_sync_event;
}
}
state_lock.lock();
return m_state_cpu_step_instruction || !IsStepping();
});
if (!IsStepping())
{
// Signal event if the mode changes.
FlushStepSyncEventLocked();
continue;
}
if (m_state_paused_and_locked)
continue;
// Do step
m_state_cpu_thread_active = true;
state_lock.unlock();
power_pc.SingleStep();
state_lock.lock();
m_state_cpu_thread_active = false;
m_state_cpu_idle_cvar.notify_all();
// Update disasm dialog
FlushStepSyncEventLocked();
Host_UpdateDisasmDialog();
break;
case State::PowerDown:
break;
}
}
if (timing.joinable())
{
m_time_played_finish_sync.Set();
timing.join();
}
state_lock.unlock();
Host_UpdateDisasmDialog();
}
// Requires holding m_state_change_lock
void CPUManager::RunAdjacentSystems(bool running)
{
// NOTE: We're assuming these will not try to call Break or SetStepping.
m_system.GetFifo().EmulatorState(running);
// Core is responsible for shutting down the sound stream.
if (m_state != State::PowerDown)
AudioCommon::SetSoundStreamRunning(m_system, running);
}
void CPUManager::Stop()
{
// Change state and wait for it to be acknowledged.
// We don't need the stepping lock because State::PowerDown is a priority state which
// will stick permanently.
std::unique_lock state_lock(m_state_change_lock);
m_state = State::PowerDown;
m_state_cpu_cvar.notify_one();
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
RunAdjacentSystems(false);
FlushStepSyncEventLocked();
}
bool CPUManager::IsStepping() const
{
return m_state == State::Stepping;
}
State CPUManager::GetState() const
{
return m_state;
}
const State* CPUManager::GetStatePtr() const
{
return &m_state;
}
void CPUManager::Reset()
{
}
void CPUManager::StepOpcode(Common::Event* event)
{
std::lock_guard state_lock(m_state_change_lock);
// If we're not stepping then this is pointless
if (!IsStepping())
{
if (event)
event->Set();
return;
}
// Potential race where the previous step has not been serviced yet.
if (m_state_cpu_step_instruction_sync && m_state_cpu_step_instruction_sync != event)
m_state_cpu_step_instruction_sync->Set();
m_state_cpu_step_instruction = true;
m_state_cpu_step_instruction_sync = event;
m_state_cpu_cvar.notify_one();
}
// Requires m_state_change_lock
bool CPUManager::SetStateLocked(State s)
{
if (m_state == State::PowerDown)
return false;
if (s == State::Stepping)
m_system.GetPowerPC().GetBreakPoints().ClearTemporary();
m_state = s;
return true;
}
void CPUManager::SetStepping(bool stepping)
{
std::lock_guard stepping_lock(m_stepping_lock);
std::unique_lock state_lock(m_state_change_lock);
if (stepping)
{
SetStateLocked(State::Stepping);
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
RunAdjacentSystems(false);
}
else if (SetStateLocked(State::Running))
{
m_state_cpu_cvar.notify_one();
m_time_played_finish_sync.Set();
RunAdjacentSystems(true);
}
}
void CPUManager::Break()
{
std::lock_guard state_lock(m_state_change_lock);
// If another thread is trying to PauseAndLock then we need to remember this
// for later to ignore the unpause_on_unlock.
if (m_state_paused_and_locked)
{
m_state_system_request_stepping = true;
return;
}
// We'll deadlock if we synchronize, the CPU may block waiting for our caller to
// finish resulting in the CPU loop never terminating.
SetStateLocked(State::Stepping);
RunAdjacentSystems(false);
}
void CPUManager::Continue()
{
SetStepping(false);
Core::NotifyStateChanged(Core::State::Running);
}
bool CPUManager::PauseAndLock()
{
m_stepping_lock.lock();
std::unique_lock state_lock(m_state_change_lock);
m_state_paused_and_locked = true;
const bool was_unpaused = m_state == State::Running;
SetStateLocked(State::Stepping);
while (m_state_cpu_thread_active)
{
m_state_cpu_idle_cvar.wait(state_lock);
}
state_lock.unlock();
// NOTE: It would make more sense for Core::DeclareAsCPUThread() to keep a
// depth counter instead of being a boolean.
if (!Core::IsCPUThread())
{
m_have_fake_cpu_thread = true;
Core::DeclareAsCPUThread();
}
return was_unpaused;
}
void CPUManager::RestoreStateAndUnlock(const bool unpause_on_unlock)
{
// Only need the stepping lock for this
if (m_have_fake_cpu_thread)
{
m_have_fake_cpu_thread = false;
Core::UndeclareAsCPUThread();
}
{
std::lock_guard state_lock(m_state_change_lock);
if (m_state_system_request_stepping)
{
m_state_system_request_stepping = false;
}
else if (unpause_on_unlock)
{
SetStateLocked(State::Running);
}
m_state_paused_and_locked = false;
m_state_cpu_cvar.notify_one();
RunAdjacentSystems(m_state == State::Running);
}
m_stepping_lock.unlock();
}
void CPUManager::AddCPUThreadJob(Common::MoveOnlyFunction<void()> function)
{
std::unique_lock state_lock(m_state_change_lock);
m_pending_jobs.push(std::move(function));
}
} // namespace CPU